

The SMART Reactor

4th Annual Asian-Pacific Nuclear Energy Forum 2010. 6. 18-19

Won Jae Lee (wjlee@kaeri.re.kr)

Contents

- Introduction
- II. SMART Design Features
- III. SMART Project
- IV. Summary & Conclusions

I. Introduction

Nuclear, a Resolution to Energy, Water & Environment Issues

Humanity's Top Ten Problems for next 50 years

- 1. ENERGY
- 2. WATER
- 3. FOOD
- 4. ENVIRONMENT
- 5. POVERTY
- 6. TERRORISM & WAR
- 7. DISEASE
- 8. EDUCATION
- 9. DEMOCRACY
- 10. POPULATION

2003 6.3 Billion People 2050 8-10 Billion People

Richard Smalley, Energy & Nanotechnology Conference, Rice University, Houston, May 3, 2003

- Small & Medium Reactors can provide Flexible Resolution to Energy, Water & Environmental Issues
 - Electricity to Countries with
 - Limited or Distributed Electricity Grid System
 - Limited Financial Resources for a Large Nuclear Power Plant
 - Combined Electricity and Process Heat to
 - Industrial Complexes: High Pressure Steam
 - Arid Regions: Water Desalination
 - Freezing Regions: District Heating
- SMART (System-integrated Modular Advanced ReacTor) is being developed by KAERI

II. SMART Design Features

SMART 330MW_{th} Application

330MW_{th} Integral PWR

Electricity Generation, Desalination and/or District Heating

- Electricity and Fresh Water Supply to a City of 100,000 Population
- Suitable for Small Grid Size or Distributed Power System

NSSS - RPV

- □ All Primary Components in a Reactor Pressure Vessel (RPV)
 - 8 Helical Once-through SG's
 - 4 Canned Motor Pumps
 - Internal Steam Pressurizer
 - 25 Magnetic Jack type CRDM's
 - RPV Internals
 - Upper Guide Structure
 - Core Support Barrel
- RPV
 - 6.5m (D) X 18.5m (H)
 - Design Condition: 17MPa, 360°C
 - Reactor Life > 60 yrs

RPV Thermal-Hydraulics

- Major Flow Path to Minimize Cross Flow in the Upper Guide Structure (UGS)
- ☐ Flow Mixing Header Assembly (FMHA) provides Thermal Mixing in case of TH Asymmetry
- Major TH Parameters

Parameter	Value
Pressure, MPa	15
Core Average Mass Flux, kg/m²s	1361
Maximum Core Bypass, %	4.0
Average Rod Heat Flux, kW/m ²	360
Core Inlet Temperature, °C	295.7
SG Inlet, °C	323
Steam Superheating, °C	30
Fuel Thermal Margin, %	> 15

Fuel & Core

- Fuel
 - Proven 17 x 17 LEU Fuel with Reduced Height
 - Peak Rod Burn-up > 60GWD/MTU
- Core
 - 57 Fuel Assemblies
 - Fuel Cycle Length > 3 yrs
 - Availability Factor > 95%
- Proven Reactivity Control
 - External CRDM
 - Soluble Boron
 - Burnable Poison
- 60 yrs of On-site Spent Fuel Storage

Fluid Systems

Safety

- □ Core Damage Frequency < 10⁻⁶/RY
- Inherent Safety
 - No Large Break: Vessel Penetration < 2" (None from RPV Bottom)
 - Large Primary Coolant Inventory
 - No Return-to-Power by Excessive Cooling
 - Low Vessel Fluence
- Engineered Safety Features
 - Passive Residual Heat Removal System (4 Train)
 - Natural Circulation Cooling of SG from Secondary Side
 - Safety Injection System (4 Train)
 - Direct Vessel Injection from IRWST
 - Containment Spray Systems (2 Train)
 - Shutdown Cooling System (2 Train)

Accident Analysis

Digital MMIS

- ☐ Fully Digitalized I&C System: DSP Platform
 - 4 Channel Safety/Protection System and Communication
 - 2 Channel Non-Safety System
- Advanced Human-Interface Control Room
 - Ecological Interface Design
 - Alarm Reduction
 - Elastic Tile Alarm

Construction

Footprint

- 300 x 300m for Electricity System
- 200 x 300m for Desalination System
- Construction Period
 - 3 yrs
- ☐ Economics (as of '07)
 - Construction Cost: \$5000/kWe
 - O&M Cost: ~ 6.1¢/kWh (Lower than Hydro Power)

III. SMART Project

Standard Design Approval (SDA) by 2011

(256th & 257th Atomic Energy Commission)

Project Organization

- Technology Validation Project: \$58M from Government
- Standard Design Project: \$83M from KEPCO Consortium

SMART Consortium

□ KEPCO Consortium was officially Inaugurated on June 14, 2010

KEPCO Consortium

Technology Validation Project

Standard Design Project

Future Plans

Licensing

- Licensing Authority: MEST technically supported by KINS
- Under Pre-Safety Review by KINS in 2010
- Standard Design Approval Application by the End of 2010
- Standard Design Approval by the End of 2011

Domestic Construction

- KEPCO is setting up a Plan for Domestic Construction of a FOAK SMART by the End of 2010
- Decision for Domestic Construction by Government is expected in 2011, then, Conventional Two-step Licensing will follow

IV. Summary & Conclusions

- SMART is a Viable Option for Early Deployment in Small & Medium Reactor Market
 - Enhanced Safety & Operability by Advanced Design Features
 - Economic Feasibility
 - Flexible Applications for both Electricity and Heat
 - Low Risk by Proven & Fully Validated Technologies
 - KEPCO Consortium strengthens the SMART Viability
- ☐ Certified SMART Design will be available for Commercial Use in 2012 after the SMART Standard Design Approval

KAERI + KOPEC +
KNF + DOOSAN

World-Class Technology Provider

KEPCO Consortium

Project Management
Marketing
Financing
Brand Power

SMART Team will make it SMART

